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[ Abstract] Hazard prevention in mission plans requires careful analysis and appropriate tools to support the design

of preventive and/or corrective measures. It is most challenging in systems with large sets of states and complex

state relations. In the case of sociotechnical systems, hazard prevention becomes even more dicult given that the be-

haviour of human centric components can at best be partially predictable. In the present article we focus on a specic

class of sociotechnical systems-namely air spaces containing pilot controlled as well as autonomous aircrafts and in-

troduce the notion of relevant hazards. We also introduce sofi institutions as an appropriate basis for analysis, with

the aim of addressing relevant hazards. The concept of soft institutions is drawn from specication languages for inter-

action between agents in multi-agent systems but, in our case, is adapted for use in systems that combine human

and automated actors.
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1 Introduction

Hazard prevention requires the assessment of all
possible behaviours of a system so that safety engineers
can intervene in the system design to ensure that each

behaviour leads to planned, foreseen and safe

states[ 1

, providing information support to design pre-
ventive and/or corrective measures for each potential
hazard.

Hazard prevention is most challenging in systems
with large sets of states and complex state relations,
which require careful planning and appropriate tools to
generate and analyse potential hazard states, avoiding
issues related to undecidability or combinatorial explo-
sion during exhaustive scan of state spaces. In the case

of sociotechnical systems, hazard prevention becomes

even more difficult given that the behaviour of human
centric components can at best be partially predictable.

The concept of sociotechnical systems was coined
in the early 50s to analyse the impact of the introduc-
tion of novel technologies in coal mining, after the em-
pirical observation that gains in productivity were not
uniform in all studied workgroups. Its roots can be
traced back to the analysis of the introduction of mech-
anisation in jute milling in Scotland during the
30s 1

as open asynchronous concurrent systems in which

Sociotechnical systems can be characterised

some entities are humans and others are machines.
Hence, interactions involving heterogeneous entities
are a central concept to design, implement and analyse
sociotechnical systems.

In the present article we focus on safety and relia-

#  This work has been partially supported by FAPESP-Brazil and by the EPSRCUK. The present article is a revised and extended

version of the article Hazard identication for UAVs based on soft institutions, by the same authors, presented at the workshop Coor-

dination, Organisations, Institutions and Norms-AAMAS 2017. Many important comments and criticisms on early versions of this
work have beengenerously provided by Dr. David Murray-Rust ( Edinburgh, UK) and Dr. Amanda Whitbrook ( Derby, UK).
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bility and, more specifically, on the construction of
tools to support systems design based on hazard preven-
tion. Given that it can be impossible or too dificult to
fully predict the behaviour of a sociotechnical system as
a whole, we introduce the notion of relevant hazards to
be considered during the design of a system.

In brief, we characterise a well determined subset
of the set of all potential hazards for a system and per-
form backward induction to identify all initial states and
chains of events that can lead to them. We then revise
the system design in order to identify points in which
design interventions can either prevent hazards or inject
remedial procedures to be taken in case they occur.

We focus on a specific class of sociotechnical sys-
tems for which hazard prevention is particularly rele-
vant-namely , bounded air spaces containing pilot con-
trolled aircrafts as well as unmanned aerial vehicles
(UAVs). We introduce a diagrammatic language to
support the characterisation of relevant hazards, of se-
quences of events that can lead to them and of events to
which can be associated actions to be kept in store for
each relevant hazard.

We also introduce soft institutions as an appropri-
ate platform for hazard prevention based on relevant
hazards, and illustrate how soft institutions can be used
as a formal counterpart to diagrams employed to design
a system for safe operations in bounded air spaces in
which pilot controlled aircrafts share space with UAVs.

This paper is organised as follows;

— In section 2 we detail a characterisation of so-
ciotechnical systems, highlighting as a relevant special
case mission planning for coordinated UAVs with diver-
sied levels of autonomy.

— In section 3 we briefly introduce the main con-
cepts related to hazard prevention and characterise in
detail the notion of relevant hazards. We also introduce
a diagrammatic language to represent sociotechnical
systems aiming specically at the prevention and analy-
sis of failures.

— In section 4 we illustrate how the proposed dia-
grammatic language can be used to characterise com-
plex agent interactions in such way that hazard preven-
tion is supported. As a concrete example, we illustrate
how it can be used to support the design of missions in

bounded air spaces in which pilot controlled aircrafts
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share space with UAVs.

— In section 5 we introduce the concept of soft
institutions, a corresponding computational platform
based on this concept and how it can be used as a plat-
form to support hazard prevention for the design of so-
clotechnical systems.

— Finally, in section 6 we present a brief discus-

sion, conclusions and proposed future work.

2 Sociotechnical systems

A sociotechnical system can be characterised as
an open network of heterogeneous interacting entities
which can exchange messages and, therefore, coordi-
nate their actions. Some of these entities are engi-
neered and can be programmed to behave according to
rules which are explicitly determined and fully under-
stood, even in the cases when they are not fully deter-
ministic; other entities are human centric and therefore
their behaviour can, at best, be nudged towards de-
sired patterns of behaviour.

Following Davis et alli"*’ we can characterise six
facets of sociotechnical systems:

1. People characterised as interacting entities
who can have different competences, attitudes, skills
and interests, based on which they coordinate their ac-
tions with other entities as well as are considered by
other entities in proposals for coordination and collabo-
ration ;

2. Technologies and tools that characterise engi-
neered interacting entities which have dierent capabili-
ties to sense, interpret and act upon the environment,
based on which they can engage into interactions;

3. Processes/procedures embodied as programs
and rules for engineered entities as well as norms, reg-
ulative policies, sanctioning and incentive mechanisms
to steer people towards expected patterns of behaviour;

4. Buildings/infrastructure which characterise
environmental resources as well as constraints for inter-
actions;

5. Goals and metrics to characterise whether the
system as a whole as well as its individual entities are
approaching or diverting from goals; and

6. Culture which characterises defeasible as-
sumptions and heuristics shared and adopted by groups

of entities participating in a sociotechnical system.
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Depending on the combination and organisation of
these facets, different design strategies for sociotechni-
cal systems are most appropriate and require different
strategies for design, implementation and management
of sociotechnical systems

1. Openness to admit or dismiss entities; a sys-
tem can be closed, partially open or fully open to the
admission or dismissal of entities. Partially open sys-
tems can require certain conditions to be fullled in or-
der to admit or dismiss entities from it;

2. Coordination levels among entities: a system
can be uncoordinated, locally coordinated or globally
coordinated. In other words, entities participating in a
sociotechnical system can act fully on their own, based
on coordination rules involving groups of entities or
based on coordination rules that engage the whole sys-
tem to behave globally as a mechanism;

3. Heterogeneity of entities in a system: a sys-
tem can be comprised primarily of humans-thus charac-
terising a social network in which human entities com-
municate and interact; primarily of technological enti-
ties-thus characterising a distributed computational sys-
tem, possibly containing entities whose behaviour is
not fully deterministic; or have varying proportions of
humans and technological entities ;

4. Statefulness: a sociotechnical system can be
stateless , 1. e. the global state of the system as well as
the internal states of entities are static, and therefore
do not need to be managed; globally stateful, 1. e. the
global state of the system can change but the internal
states of entities are static, and therefore entities can
be reactive and their modelling is simplied; or fully
stateful , 1. e. the global state of the system as well as
the internal states of entities are dynamic and must be
monitored and managed ;

5. Context sensitiveness: updates in the envi-
ronment can be irrelevant or unnoticeable, in which
case context needs not be managed; dynamic although
irrespective of the states of the system, in which case the
system as a whole as well as its components must be a-
ble to monitor changes in the environment and to adapt
accordingly ; and dynamic and sensitive to system states ,
in which case system components must be able to moni-
tor changes in the environment, correlate these changes

with their actions and adjust actions to manage the en-

vironment while they pursue their goals.

In the present work we are specically interested in
bounded air spaces in which pilot controlled aircrafts
share space with UAVs. In this scenario, a system is
typically .

1. Partially open, as aircrafts are allowed in and
out of the air space provided that well specied rules
and norms are followed ;

2. Locally coordinated, as entities communicate
and coordinate their actions following strict protocols
which induce a hierarchy of control;

3. Heterogeneous, as we are considering autono-
mous vehicles interacting with pilot controlled vehicles
and control systems comprised by sensors and actuators
as well as human operators ;

4. Fully stateful, as the states of individual enti-
ties-especially engineered entities-must be stored and
managed in order to manage the whole system, particu-
larly with respect to hazard prevention and engineer-
ing;

5. Sensitive to system states and changes resul-
ting from external factors as well as from consequences
of state updates of entities.

Our focus in the present article is on hazard pre-
vention during system design. We are interested in
structuring the interactions among entities in this sce-
nario in such way that all relevant hazards are taken in-
to account and design decisions are made in order to a-
void failures or to build readiness to fix them in case

they occur.

3 Hazard prevention based on rele-
vant hazards

We adopt the simplifying assumption that all par-
ticipating entities have been admitted to the system by
following the interaction protocols that characterise it.
Entities which do not follow certified interaction proto-
cols are considered as external entities which can influ-
ence but are not part of the system and, therefore, are
not subject to design decisions related to it.

We also assume that the behaviour of an entity
can be completely described by the interactions in
which it is prepared to participate. The internal func-
tioning of any entity is not taken into account explicit-

ly. This way, human centered entities can be consid-
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ered uniformly together with complex engineered enti-
ties, and entities can be described using different
levels of abstraction, according to the level of detail
used to specify each interaction protocol under consider-
ation.

Two fundamental strategies can be considered for
hazard prevention during systems design'®

1. Avoiding that things go wrong, i. e. antici-
pating hazards and their corresponding causes, to allow
system re-design in order to prevent those causes to oc-
cur, and

2. Ensuring that things go right, i. e. identif-
ying hazards and their corresponding causes, and then
looking ahead to events that can be a consequence of
those hazards, so that corrective measures can be in-
cluded in the system for each of the considered failures
and/or their causes.

We focus on a subset of the set of all hazards,
which are considered to be the relevant ones, which are
in fact the ones we are able to advance during synthesis
and scrutiny of a system design. The design of complex
systems that are resilient to failures must combine these
two strategies in such way that all relevant hazards are
considered.

In summary, our proposed strategy for hazard pre-
vention during the design of a sociotechnical system is
based on the principles outlined in Figure 1.

In order to support this strategy, we introduce a

simple diagrammatic language to abstract entities in a
sociotechnical system based on interaction protocols.
The proposed language is presented in Figure 2.

Each element in the proposed language can be re-
presented using standardised notation as presented in
Figures 3 and 4. Our purpose while designing this lan-
guage was to make it as simple and compact as possi-
ble, as well as easy to translate as declarative executa-
ble specications using the existing infrastructure based
on soft institutions, as detailed in section 5.

In Figure 3 we depict an entity which can partici-
pate in several contexts and assume several states with-
in each of these contexts. For each state there are sev-
eral interaction protocols which can be triggered by the
entity. Some protocols have hand-offs in dierent con-
texts and/or states. Interaction protocols are portrayed
as graphs inside white rectangles and hand-offs are re-
presented as dashed arrows connecting graphs.

In Figure 4 we depict all possible types of actions
that can belong to an interaction protocol.

As a brief example to illustrate the use of the dia-
grams, we feature in Figure 5 two entities-namely, a
UAV and the Air Traffc Control ( ATC) -during a sim-
ple interaction’. In this interaction, if necessary the
UAV refuels and then it asks for permission to take-
off. The ATC confirms the permission to take-off,
and then the UAV changes state from standing to taxi-

ing.

1. System entities are uniformly abstracted as components capable of reacting to incoming messages from other, inter-

acting components. Their reactions correspond to

(a) triggering internal, encapsulated behaviours which are influenced by environmental events ,

(b) updating internal states, and

(c¢) interfacing with well specified interaction protocols which can generate outgoing messages to other components.

2. General system states and behaviour can be characterised by published states, messages and interaction protocols

used by system entities.

3. Hazard prevention can be performed based on general system states.

Hazard prevention based on relevant hazards corresponds to the prevention of a set of system states which are consid-

ered hazards, prevention of events that can lead to these states, and prevention of events that can result from hazards.

Figure 1

5 A detailed example is presented in section 4.
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— System entities are represented as boxes. Each box is labeled by a unique ID that identies the corresponding en-
tity.

— Inside an entity box we can have another boxes representing the set of contexts into which the entity can enter.

— Inside a context box we can have another boxes representing the set of states admitted for the entity in that context.

— Inside a state box we can have another boxes representing the set of interaction protocols allowed for an entity in a
given context and state. An interaction protocol can make an entity change context and/or state. In this case, the
interaction protocol has a hand-off in a dierent context and/or state.

— Inside an interaction protocol we have a directed graph of actions, in which nodes represent individual actions and
edges characterise the order in which actions must occur in the interaction protocol. Every graph of actions has a
root node which determines the first action to be performed, followed by its successor nodes in sequence. A branch
represents a committed choice. A confluence represents a contin uation that can be performed once at least one of the
conflating branches succeeds. Hence, a graph of actions is a concise representation for a collection of alternative
chains of actions that comprise an interaction protocol. An action can correspond to (1) querying the knowledge
base of an entity, (2) performing a sensor-based operation in the environment, based on which the entity captures
information from the environment, (3) receiving a message from another entity. Incoming messages must be sent
by a specific entity in a given context and state, (4) updating a statement in the knowledge base of an entity,
(5) performing an actuator-based operation in the environment , based on which the entity performs actions upon
the environment, (6) sending a message to another entity. Qutgoing messages must be addressed to a specic entity
in a given context and state, or (7) changing context and/or state of the entity, in which case a hand-off of the
interaction protocol in a different context and/or state is triggered.

Actions containing queries to the knowledge base, sensor-based operations and receipt of messages are called in-
actions while actions corresponding to updates in the knowledge base, actuator-based operations, remittance of
messages and change of context and/or state are called out-actions. Sequences of in-actions can work as precondi-

tions for individual out-actions to occur.

Figure 2 Diagrammatic language to represent entities in sociotechnical systems

Entity ID
in-actions KB Query / sensor-based operation Sl

Context, Context, Context, Incomingmsg | ©- <

State,, State,, () State;,

b @] |
o KB Update / actuator-based operation *-b
: / , - i m'“""”___ —_— i_nlllvﬂwn i

precondition:

Context, {5 Context,

State,; State,,;

Figure 3 Representation of an entity in the

diagrammatic language

Figure 4 Representation of actions in interaction

protocols in the diagrammatic language
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1D = UAV001 1D = ATC002

Context = UAV Context = ATC

State = standing State = operational

Int. Prot. = permission request

- fuetoe
e\

nepuei i |
P |

N T )

Int. Prot. = permission reply

\£
\

T T
State = toxiin l
|

A

int. Prit. = norma foxiing !

T

()

Figure 5 Message exchanges between an
autonomous UAV and an ATC

Hazard prevention can raise the possibility that the
message from the ATC never gets to the UAV. Back-
ward reasoning could suggest that the exchange of mes-
sages between the UAV and the ATC should contain
additional steps, so that the UAV would acknowledge
receipt of the message and the ATC would not stop
sending copies of the permission to take-off until re-
ceiving an acknowledgment. Forward reasoning could
suggest the inclusion of a time-out sensing operation as
part of the interaction protocol for the UAV in standing
state, to prevent the UAV from staying idle in case the
message from the ATC never arrives. Both strategies
could be combined in order to design a system that is
resilient to failures.

Our purpose in building this diagrammatic lan-
guage has been to support system designers activities
with a clear and intuitive pictorial language capable of
exposing hazards in a system which can then be consid-
ered accordingly.

In the next section we present a detailed example
in which a UAV is followed from standing off-lane
through flying to landing. We use this example to illus-
trate how the proposed diagrammatic language can be
used to represent complex systems in operation and how
it can be used to identify hazards and help in the rene-
ment of system design to provide appropriate care to

potential hazards.

4 An illustrative example

In order to show how the proposed diagrammatic
language can be used for hazard prevention, we con-

sider a slightly more sophisticated example in which a
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complete mission for a UAV is depicted and analysed.
This mission corresponds to a complete flight-from
standing off-lane through flying to landing-and requires
interactions involving the UAV and an ATC. The num-
ber of states through which the UAV passes is seven;
Standing , Taxiing, Take-off, Initial climb, En route,
Approach and Landing.

The diagrams corresponding to each state are de-
picted in Figures 6 to 12.

In Figure 6 the entity UAV0O01 is initially switched
off and off-lane. It is assumed that it is listening to the
appropriate channel for messages to receivea message
requiring it to start the engine, which takes entity
UAVO001 to the context of UAV and standing state. The
message triggers the interaction protocol depicted in
Figure 6. When it receives a message to start the en-
gine, it updates the knowledge base and performs the
action of starting the engine. It then queries the knowl-
edge base to check whether the engine has started. If
there is a failure, then it tries again to start the engine,
otherwise it updates the knowledge base and checks fu-
el level and systems. If there is a problem, then it
stops the engine and tries to start again, otherwise it
updates the knowledge base and hands off control to an
interaction protocol in Taxiing state.

The proposed strategies for hazard prevention and
prevention/recovery have resulted in the loops back to
the engine start message, together with the action to
stop the engine in case fuel and system messages indi-
cate that the UAV is not ready for flying.

In Figure 7 we have two entities, resp. UAV0O01
and ATCO01. UAVOO1 stays in the context of UAV but
now moves to taxiing state. ATCOO1 assumes context
ATC and state to authorise taxiing towards take-off.

The interaction protocol for UAVOO1 in context
UAYV and taxiing state is slightly more complex than the
protocol for standing state. UAVOO01 sends a message
to an entity that is available in the context of ATC. In
our example, ATCOOI receives this message and re-
plies back with either take-off OK or take-off denied. 1f
take-off is denied, then UAV0O1 loops back and re-
sends the message, until take-off is OK. When take-off
is OK, then UAVO0O01 checks whether power back is re-
quired. In case it is, then it performs appropriate oper-

ations and checks again. When power back is not re-
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quired, then it finally performs taxiing and hands off
control to an interaction protocol in Take-off state.

In Figure 8, UAVOO1 moves to take-off state and re-
quests authorisation to take-off. If ATCO01 authorises
take-off, then UAVOOL performs fuel and systems verifi-
cation. If there is something wrong, then take-off is
aborted and a new authorisation is requested ; if verication
succeeds then UAVOOL proceeds to take-off. If ATCO01
does not authorise take-off, then UAV001 checks its
knowledge base to decide whether to hold take-off or to
give up. If decision is to hold take-off, then a new autho-
risation is requested, otherwise mission is aborted.

In Figure 9, UAVOO01 performs the transition from
take-off to climb, which is itself a transition state to-
wards en route state.

In Figure 10, UAV0OO1 moves to en route state
and maintains communication with ATCOO01 anytime it
requests change in cruise level, until it identies it is
time to start descent. When this situation arises, then
UAVO0O01 requests permission to start descent. When
ATCOO1 grants permission for descent then UAV0O1
performs descent and state moves to approach.

In Figure 11, UAVOOI moves to approach and main-
tains communication with ATC001 to request permission
to start approach for landing. In case meteorological con-
ditions are not adequate, permission is denied and, de-
pending on what conditions are occurring, appropriate
measures are taken before a second attempt to start ap-
proach for landing is started. In case meteorological con-
ditions are fine, permission is granted and approach is
started. In case some operation does not succeed during
approach, UAVOOI goes to circling and approach is re-
started, otherwise approach is finalised and the entity
moves to landing, which is the final state in this mission.

Finally, in Figure 12, UAV moves to landing and
attempts to perform landing. If it succeeds, then it
goes to taxiing and switches off engines, otherwise it
takes-off again.

A design tool to support hazard prevention in these
terms must allow the representation of complex systems
based on this vocabulary, and the exhaustive simula-
tion of interactions involving entities in a system once
an event (or set of events) is highlighted. In the next
section we introduce soft institutions as an appropriate

platform to build one such tool.

1D = UAV001

Context = UAV

State = standing

Int. Prot. = engine start

start

) KB: standing/stopped/engine stopped
w—p Action: start engine
4= Query: engine on?

KB: standing/starting/engine starting

—
Query: fuel and system OK?
-

Actiongstop engine

— —
KB: standing/started/engine normal
~
.
hand-off to taxiing ~ ~
~
N

Figure 6 Interaction protocol for entity in context
of UAV and state as Standing

ID = UAV001 ID = ATC001
Context = UAV Context = ATC
State = taxiing State = authorise taxiing
Int. Prot. = taxiing UAV Int. Prot. = auth. UAV
——
hand-off from engine start KB: standing/request/engine on °
— KB: request
msg: request take-off —_

msg: take-off denied

-—
Query: OK?
msg: take-off OK

— )
Query: require
power back?

no

Action: power back wp Actiqn| faxi to runway

KB: taxiing/taxiing/powed| back
) position OK?

Action: power back stopppd

Action: taxi stop
KB: taxiing/take-off/operating

hand-off to take-off

. ="

Figure 7 Interaction protocol for entities as UAV
(Taxiing) and ATC ( Auth. Taxiing)
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1D = UAVO01 1D = ATC001 1D = UAVO01
Context = UAV Context = ATC Context = UAV
state = take-off State = authorise take-off oD

Int. Prot. = take-off UAV Int. Prot. = auth. UAV Int. Prot. = climb UAV

e
Rand-off rom taximg UAY @) KB: standing/request/engine on

KB: request hand-off from take-off
request take-off — —_— U - -
‘msg: take-off denied —
Query: OK?
msg: take-off OK
no, yes

o

Query: hold take-off?
—

) KB: take-off/take-off/engine operating
=) Action: initial climb
-

Query: power OK and systems OK and
altitute above threshold?

g ?

-
Query: fuel and
systems OK?

no yes

es

Action: taxi from KB: climb/climb/engine operating

Action: take{aff]
KB: taxiing/taxiin§/operating
Action: stop e
— z
KB: take-off/aborting/operating —

N N ~
~ hand-off to En route
N,

a
hand-off to climb

Figure 8 Interaction protocol for entities as UAV

Figure 9 Interaction protocol for entity as
(Take-off) and ATC (Auth. Take-off)

UAV (Climb)

ID = UAV001 ID = ATC001
ID = UAV001 ID = ATC001
Context = UAV Context = ATC
Context = UAV Context = ATC
State = En route State = authorise flight
State = approach State = authorise approach
Int. Prot. = En route UAV Int. Prot. = auth. UAV
Int. Prot. = approach UAV Int. Prot. = auth. UAV
—— - ——)
hand-off from climb UAV ° —— - —— >°
O «5: reques » "
KB: climb/climb/engine on 9 [1and:o from Eniroute UAV: route/descent/engine on °
— — KB: request
Action: reach cruise altitude — msg: request approach —
Query: OK?|
— . msg: approach denied —
- OK?

KB: En route/climb/engine on Query: OK?
— msg: approach OK
Query: cruise altitude OK? no, yes

Il ?

msg: no change

msg: change OK

—
wnwind circul]

ach/downwind/engine on

circuit

msg:descent

KB: request|
—

-
Query: OK?

4
N
KB: approach/failed approacl N

-— S

N

a

—
KB: En route/hold/engine on
Action; circling i
? T — hand-off to landing

Action: descent —
’ °Fan?o)rto Gpprodeh

Figure 10 Interaction protocol for entities as UAV

Figure 11 Interaction protocol for entities as UAV
En route) and ATC (Auth. change level and Auth. descent) g P

(Approach) and ATC ( Auth. approach)
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1D = UAVO01

Context = UAV

State = landing

Int. Prot. = landing UAV

hand-off from approach

KB: approach/approach/engine on
Action: nose up
KB: landing/flare/engine on

Action: touchdown

Tl

Query: landing OK?

KB: landing/landing/engine on Action: abort landing

Action: taxi from runway KB: landing/abort/engine on

KB: taxiing/taxiing/engine on Action: take-off

11l

Action: stop KB: take-off/take-off/engine on

KB: standing/standing/engine off

~
~
~

~
hand-off to take-off v
-

Figure 12 Interaction protocol for entitiy as UAV
(Landing)

5 Soft institutions

We argue that soft institutions can be used as a
tool to design and implement sociotechnical systems
which is particularly useful for hazard prevention, giv-
en that a translation from the diagrammatic language
presented in the previous sections to interactions proto-
cols in a soft institution is immediate.

Soft institutions generalise the concept of electronic

[4,5,10]

institutions to provide means to model complex sys-

tems comprised by human as well as engineered peers'”’ .
They have been proposed as an appropriate platform to
design and implement sociotechnical systems'?’.
Electronic institutions are a powerful framework to
build systems comprised by multiple entities based on
the principle that the global behaviour of a complex
system can be managed by the establishment of norms,
rewards for entities that abide by these norms and sanc-
tions for those who challenge them. In order for an en-
tity to participate in an electronic institution, it must
be prepared to respond to norms, rewards and sanctions,

as well as interact with other participating entities.

Norms, rewards and sanctions in an electronic in-
stitution form a normative system which should be flexi-
ble in order to adjust to the observed behaviour of par-
ticipating entities in an institution. The normative sys-
tem dictates the way entities should behave in order to
be allowed into an electronic institution and an entity
(or organisation comprised by entities) must comply
with the normative system in order to be able to request
participation in an electronic institution.

Technological entities can be designed and built to
comply with normative systems and, therefore, partici-
pate in electronic institutions. Human entities, howev-
er, may feel uncomfortable to need to learn and then to
be submissive to third party rules as a prerequisite to
join into a network of peers.

Soft institutions, in contrast, allow entities to act
freely and adjust their behaviour in a minimalist way to
be able to join into local interaction protocols. Instead
of having a centralised control around the normative
system (as is the case with electronic institutions ),
soft institutions have a decentralised, possibly asyn-
chronous control, centered on entities which choose to
interact according to available protocols. This way, the
barrier to enter a soft institution is significantly lower
for humans, hence an interaction platform based on
soft institutions can be more appealing to human enti-
ties than one based on electronic institutions, at the cost of
only being able to have partial control over design, opera-
tion and management of a system based on soft institutions.

From the perspective of hazard prevention, soft
institutions are a good modeling language for complex
sociotechnical systems, well aligned with the strategy
for hazard prevention proposed in section 3. Soft insti-
tutions also consider as a basic principle that a full ac-
count of all states of the systems being modeled is not
feasible , hence hazard prevention can only-and at best-be
based on relevant hazards as characterised in section 3.

Soft institutions are organised in four layers

1. The entity controlled layer: this layer caters
for individual capabilities and actions corresponding to
each entity. Entities can be human individuals (e. g.
pilots and flight controllers) , technological entities (e.
g. aircrafts, sensing and communicating devices) , or
organisations constituted of other entities (e. g. teams

of aircrafts flying in formation, teams of controllers) ;
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2. The communications layer: this layer com-
prises the infrastructure and processing power to man-
age message exchanges between entities. In principle,
messaging is peer-to-peer with unique addressing. Ad-
ditional message control structures can be built using
the entity controlled and the communications layer.

3. The coordination layer : this layer consists of
social norms that constrain and regulate interactions
among selected peers (e. g. rules to enter a controlled
air space, navigate in it, interact with other entities
and leave the air space).

4. The environment: this layer comprises all
other phenomena that can influence the behaviour and
state of the soft institution.

We assume a language £ used to describe facts
and computational expressions. The language consists
of three constructs:

1. Terms: correspond to constant or atomic ex-
pressions of dierent types;

2. Variables; are uniquely identied strings to
which dierent values can be assigned ;

3. Functions; are collections of mappings from
tuples of terms to terms.

Value assignments to variables are expressed as
substitutions ¢ of the form {x, = ¢,, -+, x, — ¢, |,
which denote that the construct ¢, is assigned to the
variable x,. A substitution application function ¢ is ap-
plied to whole constructs, producing a new construct in
which every variable in a construct ¢ that is present in
a substitution ¢ is replaced by the corresponding con-
struct. For example, if ¢ = {x, = y,--,x, 5} and ¢
= (w0 + 2, + &), thenge = (y +5 + x3).

Using substitutions we can naturally dene unica-

tion ( £). A substitution application ¢ unies two con-

structs ¢, and ¢, if the application of ¢ to both con-

structs yields the same result, i.e. ¢, Z¢, iff oc, =
o,

Each entity maintains a personal knowledge base
that comprises its beliefs, opinions, individual goals,
actual knowledge, reasoning capabilities, actions etc.
It is assumed, as a design principle, that entities do
not have access to each others’ personal knowledge ba-
ses. It is also assumed, however, that each entity par-

ticipating in a soft institution maintains a part of its
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knowledge base stored as a collection of £ constructs,
which we here name institutional knowledge base, and
which are updated and consulted using two operators

1. A(c): this operator updates a fact ¢ ( KB
Update in Figure 4). Depending on specic institutions
being designed, an update may correspond to inser-
ting, actual updating or deleting information from the
institutional knowledge base;

2. K(c, o) this operator consults the institu-
tional knowledge base (KB Query in Figure 4). Simi-
lar to the A operator, variations on the semantics of the
K operator can be used for dierent soft institutions. Es-
sentially, K(¢, o) checks whether the construct ¢ be-
longs to the institutional knowledge base of an entity; if
it does, then it is retrieved from the knowledge base,
and the substitution ¢ is used to build the construct o(c¢).

The institutional knowledge base contains a set of
ground terms R = {R,,-:-, R, | which represent a set
of contexts available to the entity. Contexts are param-
eterised by states, so that e. g. R, /e refers to state s; in
context R,. It also contains a set of constructs PROT
using the syntax specied in the following paragraphs,
which characterise interaction protocols available to the
entity given a context and a state.

Given an implementation of a platform for soft in-
stitutions, contexts and states are the means for an en-
tity to enter a soft institution; an entity can pick a con-
text and then a state from R, which become the institu-
tional context and state of the entity and grant the enti-
ty the right to engage into interactions using an appro-
priate protocol available in PROT . Contexts and
states can be retrieved and updated using the A and K
operators.

Messages are passed from entity to entity via the
communications layer. To each entity is assigned a
unique ID, and messages depend upon contexts and
states to be properly treated. A message M is assumed
¢, R.., ID,. >,
, 1s the context/state that the sending entity

to have the format M = <R
where R

senc

send » rec 9

must necessarily hold when the message is sent; gT is
a ground term which corresponds to the content of the
message; R, is the context/state that the receiving en-
tity must hold in order for the message to be received;

ID ;.. is the ID of the “other” entity: it is the ID of the

receiver when a message is being sent and the ID of the

other
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sender when a message is being received.

The institutional knowledge base also contains two
constructs that represent the state of the entity with re-
spect to the soft institution ;

1. Comm stores the status of communications. It
contains the entity ID and two message queues contai-
ning incoming and outgoing messages respectively.

2. Coord stores the status of coordination. It con-
tains the list of contexts and states already held by the
entity including the current context/state as head of the
list, the protocol being followed, the stage of execution
of the current protocol and the set of variable assign-
ments / substitutions.

Protocols are dened as a variation and extension of
the Lightweight Coordination Calculus ( LCC)" ac-

cording to the specication presented in Figure 13.

Carefully crafted sets of protocols embedded into appro-
priate states and contexts can implement sophisticated
patterns of interaction, servicing large and complex so-
ciotechnical systems. Interaction protocols work as sup-
port services for entities to engage into well regulated
and carefully designed interactions, but they are not
mandatory and they do not necessarily cover all aspects
of all interactions that connect entities participating in
the same sociotechnical system. System modeling
based on soft institutions can be used to highlight facets
of a system that are considered most relevant. For haz-
ard prevention, relevant hazards can be characterised
in detail and simulations can be performed, so that for-
ward and backward reasoning can be performed and the
design of a system can be rened and improved towards

resilience with respect to failures.

— A protocol is a list of clauses. A clause defines a script to be followed in order for an interaction to take place.

Clauses have the format cl(R, [c,, =+, ¢, ])

:: = Def where R € R is a context parameterised by a state, c,,

-+, ¢, are optional parameters and Def is the body of the clause:

Def . = Closed \ Out \ Out < [In,, -+,
In;: = rec(Msg) \ cond(c)
Out : = Null \ snd(Msg) \ chR(R', [¢',, -+
— Closed concludes an interaction.
— Out is an output action
® Null is an empty action that does nothing.
® snd(Msg) sends message Msg to another entity.
® chR(R', [¢',, -

the state of the entity within the same context.

In,] Def then Def \ Def or Def

, ¢/ 1) 1 ACe)

, ¢'.]) either changes the context of the entity during the execution of a clause or changes

e A(c) updates the construct ¢ into the institutional knowledge base.

— Out < [In,, -+, In,] performs a list of input actions and then performs an output action. An input action In, is
one of the following alternatives ;
4 rec(Msg) recetves a message Msg from another entity.
e cond(c) checks whether there is a construct ¢’ in the institutional knowledge base and a substitution o such that
K(¢', o) = ¢ The construct ¢ is a condition which can be satised if the answer is positive.

— then is a connective that represents sequential and, i. e. it joins two computational steps in sequence.

— or is a connective that represents non-deterministic choice between two computational steps.

Figure 13  Protocols in LCC

. mous UAVs, based on a diagrammatic language that
6 Conclusion and future work . N
can be translated to protocols in soft institutions.
Implementations of platforms for soft institutions
]

In this work we have considered hazard prevention

during the design of systems for flight control of autono- have already been presented elsewhere'”’ | and frame-
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works for formal verification of interaction protocols
with respect to desired properties have also been devel-
oped'®’. In future work, we plan to employ these sys-
tems as a platform to support the activities of safety en-
gineers during the design of complex systems, by pro-
viding them with tools to identify potential relevant haz-

ards.
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