基于渐进损伤有限元的 复材厚板连接分析

A Study of Thick Composite Laminates Joints Based on Progressive Failure FEM Analysis

匡国强 叶聪杰 / Kuang Guoqiang Ye Congjie(上海飞机设计研究院,上海 201210)

(Shanghai Aircraft Design and Research Institute, Shanghai 201210, China)

摘要:

针对复合材料厚板连接件,建立三维累积损伤有限元模型预测复合材料厚板连接件的挤压性能。对复合材 料层板中的纤维失效、基体失效和分层等损伤类型进行分析模拟,预测厚板连接件的破坏模式及损伤扩展 过程,并分析尺寸参数与复材厚层合板连接强度的关系。

关键词:复合材料厚板;渐进损伤;连接强度

中图分类号:V215

文献标识码:A

[Abstract] A three-dimensional progressive damage model was set up for predicting the bearing performance of thick composite laminates under tensile loading. Analyzing and simulating the fibre damage, matrix damage and delamination. The 3D model has the capability of assessing the ultimate bearing strength of joints and simulating the whole process of damage initiation, propagation and catastrophic failure of the structure. The finite element method could also be used to predict the relationship between structure design parameters and load carrying capabilities. [Key words] thick composite laminates; progressive damage; joint strength

0 引言

复合材料具有比强度高、比模量大、耐疲劳性 能好和力学性能可设计等优良特性,在航天、航空 领域得到广泛应用。就航空领域而言,复合材料从 最初应用于垂尾、方向舵等一些次要受力构件发展 到应用于机翼、机身等主要承力构件。国内某型民 机中央翼盒与外翼盒对接区采用复材厚板连接设 计,传载接头存在很大附加弯曲应力,力学问题突 出。复材接头结构的螺栓孔周围存在应力集中严 重影响接头的连接强度导致结构损伤情况复杂。 本文应用工程方法、三维有限元模型^[1],对厚板连 接件强度进行分析,研究复合材料的渐进损伤破坏 过程。

1 试验介绍

复合材料和钛合金连接的热应力是一种严重

情况。试验选择高温湿态环境。试验加载环境:温度 70±3°C,相对湿度(RH) 85±3°%。

试验件设计如图 1 所示。试验机加载方案和贴 片布置如图 2 、图 3 所示。

图 1 复材厚板连接件数模

图 2 试验加载方案

(b) 双剪贴片图图 3 试验件贴片示意图

试验包含不同铺层厚度、铺层比例、单双剪切 连接形式。试件用 12~18 号高锁螺栓连接。铺层 编号、紧固件信息如表 1、表 2 所示。

铺层编号	铺层比例 [0/±45/90]	总层数	单层厚度	总厚度
A1	(50/40/10)	40	0.188	7.52
B1	(25/50/25)	40	0.188	7.52
C1	(70/20/10)	40	0.188	7.52
D1	(30/60/10)	40	0.188	7.52
A2	(50/40/10)	60	0.188	11.28
B2	(25/50/25)	64	0.188	12.03
C2	(70/20/10)	60	0.188	11.28
D2	(30/60/10)	60	0.188	11.28
A3	(50/40/10)	80	0.188	15.04
B3	(25/50/25)	80	0.188	15.04
C3	(70/20/10)	80	0.188	15.04
D3	(30/60/10)	80	0.188	15.04

表1 复材厚板铺层表

表2 紧固件性能

紧固 件	名称	牌号	直径 /mm	抗剪极 限/kN	抗拉极 限/kN
	壮厶	10 号高锁螺栓	7.94	32.47	40.9
高锁 螺栓	弘 石 金抗	12 号高锁螺栓	9.53	46.70	62.3
	剪型 凸头	14 号高锁螺栓	11.11	63.61	84.1
	高锁螺栓	16 号高锁螺栓	12.8	82.96	113.9
		18 号高锁螺栓	14.3	105.0	144.1

2 复材厚板孔壁挤压应力分析

2.1 两种分析方法

试板受均匀拉伸载荷时,孔壁名义挤压应力 $\sigma_{AXHE} = P/Dt$ 。连接件传递载荷时,孔壁挤压应力 向剪切面集中。

本文通过 ABAQUS,线性接触模拟 15mm 厚 80 层单剪试件,受拉伸载荷时孔壁挤压应力情况。模 型采用 8 节点缩减积分单元,C3D8R 模拟复材板, C3D4 单元模拟钛板,C3D8R 模拟高锁螺栓,应力结 果如图 4 所示,孔壁挤压应力如表 3 所示。

图 4 沿厚度方向孔壁挤压应力云图

表 3 沿厚度方向孔壁挤压应力结果

厚度 t/mm	孔壁挤压应力 σ/MPa
0.00	-566.99
1.88	-570.51
3.76	-595.56
5.64	-646.06
7.51	-702.51
9.39	-836.03
11.26	-1 026.53
13.14	-1 499.41
15.00	-1 887.88

把厚度 *t* 和孔壁挤压应力 σ 正则化,得到厚度 方向孔壁挤压应力曲线变化,如图 5 所示,进行数据 拟合。

图 5 沿厚度方向孔壁挤压应力变化

下文比较有限元数值拟合应力分布假设结果 和工程的三角形分布假设。比较两种假设孔壁薄 弱部位应力集中。

(1)算例1:有限元分析结果拟合的应力分布 假设孔边挤压应力沿厚度分布函数:

$$\sigma_{bru} = \lambda \left(\frac{P}{Dt} Y(\frac{x}{t}) \right), \qquad (2)$$

其中,多项式函数:

$$Y(\frac{x}{t}) = 0.019\left(\frac{x}{t}\right)^3 - 0.058\left(\frac{x}{t}\right)^2 + 0.247\left(\frac{x}{t}\right)$$
$$\Leftrightarrow \alpha = \frac{x}{t}, \text{ M} P = \int_0^t \left(\lambda \cdot \frac{P}{t} Y(\frac{x}{t})\right) d(t \times \frac{x}{t})$$
$$= \lambda \cdot \frac{P}{0} Y(\alpha) d\alpha$$

$$\lambda' = \frac{1}{\int_{0}^{1} Y(\alpha) d\alpha}$$

$$\sigma_{bru,max} = \frac{P/Dt}{\int_{0}^{1} Y(\alpha) d\alpha} \times [0.019(\alpha)^{3} - 0.058(\alpha)^{2}]$$

$$P = 0.208$$

+0.247(
$$\alpha$$
)]1 _{$\partial=1 = $\frac{P}{Dt} \times \frac{0.208}{0.1089} = 1.91 \frac{P}{D}$$}

有限计算结果:孔边挤压应力是名义挤压应力 的1.91 倍。

(2)算例2:三角形假设应力分布

剪切面处孔壁挤压应力最大,挤压应力沿厚度 方向线性分布,孔壁挤压应力函数:

$$\sigma_{bru} = \frac{\lambda P}{Dt} Y(x), Y(x) = \frac{X_{\rm L}}{t}$$
(3)

$$P = \int_{0}^{1} \left(\lambda \frac{P}{Dt} \times \frac{X_{\rm L}}{t}\right) D dX_{\rm L} = \frac{\lambda P}{2}, \sigma_{bru,max} = \frac{2P}{Dt}$$
(4)

式中,*X*_L为离自由面的距离。 两种假设的应力梯度情况如图6所示。

图 6 两种假设下孔壁挤压应力分布比较

综合比较两种假设,发现有限元计算的孔壁最 大挤压应力与工程三角形假设所得最大挤压应力 相近;而且工程假设偏保守。

下文通过有限元模拟孔边挤压变形达4%孔径 初始失效破坏,同试验数据对比。

2.2 弹性模量工程计算

表4 某类单向带力学性能

中模高强碳纤维增韧环氧树脂预浸料 (单向带)	参考平均值
单向层压板纵向拉伸模量 Elt(GPa)	185.5
单向层压板纵向压缩模量 Elc(GPa)	169.6
单向层压板主泊松比 v12	0.34
单向层压板横向拉伸模量 E2t(GPa)	9.03
单向层压板横向压缩模量 E2c(GPa)	暂缺
单向层压板纵横剪切模量 G12(GPa)	4.27

由于湿热环境,弹性模量降低;查参考数据,发现 E1t 在湿热环境下降低到 164 GPa。按照经典层 板理论,计算 E11、E22、v12、G12,结果如表 5 所示。

表 5 复材层板弹性模量

铺层厚度	试件编号	E11	E22	V12	G12
40 层	D40A1	111	38.2	0.432	19.3
	D40B1	69	69	0.293	22.9
	D40C1	145	29.6	0.293	11.9
	D40D1	76.9	43.8	0.514	26.6

注:D40A1 中 D 表示双剪试件,S 表示单剪。

分析试验件过渡段应变片数据,取试验加载过 程中段数据同实测应变计算弹性模量,具体结果如 表6所示。

表6 过渡段应变结果比较

铺层 厚度	试件 编号	测算应 变片值	应变片 实测值	误差	铺层比例 [0/±45/90]
	D40A1	1 597.3	1 833.9	-12.90%	(50/40/10)
40 层	D40B1	2 569.6	2 569.0	0.03%	(25/50/25)
	D40C1	1 069.9	1 363.9	-21.55%	(70/20/10)
	D40D1	2 305.7	2 312.9	-0.31%	(30/60/10)

注:应变片实测值是过渡段上下对应位置测量结果的平均 值,测算应变片值 ε=F/E_{equiv}A。

表中测算 A1 和 C1 铺层的 ε 误差较大,按试验 数据修正层板弹性模量 E_{equiv} ,如表 7 所示。

铺层厚度	试件编号	理论 E11GPa	修正后的 E11GPa
	D40A1	111	127.4
40 层	D40B1	69	69.0
	D40C1	145	184.8
	D40D1	76.9	77.1

表7 复材层板弹性模量修正

3 试验结果分析

复合材料厚板连接件的失效模式、连接强度与 试验件的设计参数密切相关。不同铺层厚度、铺层 比例、铺层顺序、螺栓孔径板厚比、单双剪连接形式 等,都对复材厚板连接强度有影响。本文仅考虑孔 径板厚比、铺层厚度和铺层比例的影响。

试验中,厚板连接件的主要破坏形式包括:螺 栓剪断裂-复材板孔边挤压破坏,复材板剪切破坏, 如图 7 和图 8 所示。

图 7 试板挤压-剪切破坏模式

3.1 单双剪连接件试验结果

由表8可见:单剪试件较双剪的孔壁应力集中

图 8 孔壁挤压破坏模式

表 8 单双剪不同厚度试验件破坏载荷情况

铺层代码	初始破坏 载荷/kN	最终破坏 载荷/kN	备注
S40A1	29.74	60.46	孔挤压破坏
S60A2	49.66	87.58	螺栓剪断
S80A3	55.25	110.84	螺栓剪断
D40A1	60.46	88.94	复材挤压+螺栓剪断
D60A2	101.3	152.2	复材挤压+螺栓剪断
D80A3	146.05	209.06	复材挤压+螺栓剪断

注1:初始破坏指螺栓孔挤压变形达4%孔直径即判定为初 始失效^[2],通常工程上判定为失效;

注2:最终破坏指连接件完全失去承载能力。

严重,且随着铺层厚度增加而增大。因此,单剪厚 板试件最易初始失效,孔壁失效应力水平低。

3.2 不同铺层比例试验结果

表9 不同铺层比例试验结果

铺层 厚度	试件 编号	初始破坏 载荷/kN	最终破坏 载荷/kN	离散 系数	破坏形式
	D40A1	60.46	88.94	1.1%	挤压-剪切破坏
40 层	D40B1	51.78	90.72	3.24%	挤压-剪切破坏
	D40C1	57.83	78.04	1.57%	剪切破坏
	D40D1	54.6	87.92	0.85%	挤压-剪切破坏

由表9可见:试验件铺层比例不同,连接件失效 形式可能不同。当试板 45°铺层比例低,导致层板 面内剪切强度低,则易出现剪切破坏模式。

3.3 不同孔径板厚比试验结果

由表 10 可见:厚板连接试验件孔径板厚比 (D/t)很小,螺栓剪切强度相对于层板孔壁挤压强 度不再是"足够强",连接件失效模式多样。单剪切 试验件,以螺栓剪断裂失效为主;双剪试件有两个 剪切面,以孔壁挤压-剪切破坏为主,如图9所示。

民用飞机设计与研究 Civil Aircraft Design & Research

铺层 厚度	试件编号	孔径 板厚 比 D/t	初始破 坏载荷 /KN	最终破 坏载荷 /KN	备注
	S60D2-0.99	0.99	29.75	51.4	挤压-剪切破坏
60 层	S60D2	1.13	44.81	82.73	螺栓剪断裂
	S60D2-1.27	1.27	48.02	105.7	螺栓剪断裂
	D60D2-0.99	0.99	56.36	100.2	挤压-剪切破坏
	D60D2	1.13	97.18	135.05	挤压-剪切破坏
	D60D2-1.27	1.27	120.02	181.08	挤压-剪切破坏

表 10 不同孔径板厚比试验结果

(a) 不同 D/t 比单剪试验件的载荷位移曲线

4 复合材料强度准则及刚度退化

复合材料在使用过程中产生损伤情况主要有: 基体压缩失效、基体断裂失效、纤维断裂失效、纤维 屈曲失效和层间分层失效等情况。本文研究的中 央翼盒与外翼盒对接区复材厚板连接件,在偏心弯 矩作用下易产生分层失效,且孔边应力情况复杂, 传统的复合材料中厚层合板的挤压强度校核方法 不再适用。

4.1 复合材料层板强度失效准则

基于 Mindlin 经典层板的等效单层板理论,忽略了层板的弯曲效应,假设螺栓纯剪切破坏,复材 层板受均匀应力作用,与实际情况不符合;本文基 于连续体的三维弹性理论,采用三维损伤模型和接 触算法进行模拟。通过 ABAQUS 的 UMAT 子程序, 模拟复材厚板连接件逐步失效过程。

复合材料的强度失效准则很多,不同材料体系可能适用不同的复合材料强度准则。最大应力失效准则、最大应变失效准则、蔡-希尔(Tsai-Hill)准则、霍尔曼(Hoffman)准则、蔡-希尔(Tsai-Wu)准则、Hashin 准则、Chang 准则、Puck 准则等都是较常用的准则。复合材料层合板在承受螺栓挤压载荷作用时,由于各应力分量的作用,可能出现多种损伤形式,本文进行三维有限元计算,选取基于各个不同损伤形式的 Hashin 强度准则为判断依据。

Hashin 三维强度准则:

纤维拉伸失效模式 $\sigma_{11} \ge 0$,

$$|\sigma_{11}| = X_c \tag{6}$$

基体拉伸失效模式 σ22+σ33>0

$$\frac{1}{Y_{\iota}^{2}}(\sigma_{22}+\sigma_{33})^{2}+\frac{1}{S_{\iota}^{2}}(\sigma_{23}^{2}+\sigma_{22}\sigma_{33}) +\frac{1}{S^{2}}(\sigma_{12}^{2}+\sigma_{13}^{2})=1$$
(7)

压缩基体模态 σ_{22} + σ_{33} < 0,

$$\frac{1}{Y_{c}} \left[\left(\frac{Y_{c}}{2S_{t}} \right)^{2} - 1 \right] (\sigma_{22} + \sigma_{33}) + \frac{1}{4S_{t}^{2}} (\sigma_{22} + \sigma_{33})^{2} + \frac{1}{S_{t}^{2}} (\sigma_{23}^{2} - \sigma_{22}\sigma_{33}) + \frac{1}{S^{2}} (\sigma_{12}^{2} + \sigma_{13}^{2}) = 1$$

$$(8)$$

 S_{1} 代表横向剪切强度,即剪应力 σ_{23} 的许用值 (σ_{13} 和 σ_{12} 都是 S)。

分层失效(
$$\sigma_{33}$$
>0)
 $\left(\frac{\sigma_{33}}{Z_t}\right)^2 + \left(\frac{\tau_{13}}{S_{13}}\right)^2 + \left(\frac{\tau_{23}}{S_{23}}\right)^2 = 1$ (9)

 Z_i 代表厚度方向拉伸强度;

分层失效(
$$\sigma_{33}$$
<0),

$$\left(\frac{\tau_{13}}{S_{13}}\right)^2 + \left(\frac{\tau_{23}}{S_{23}}\right)^2 = 1$$
(10)

4.2 层合板材料参数假设

复合层合板材料性能数据一般仅为单层平面

内的数据,缺少沿厚度方向弹性模量、剪切模量、泊 松比及层间强度数据,且很难通过试验的手段获得 这些数据。因此,目前在三维的应力分析中,沿厚 度方向的弹性模量和强度参数参照经验假设。例 如,复合材料纤维纵向为1方向,单层面内横向为2 方向,单层厚度方向为3方向,则材料的弹性参数 满足:

$$E_{2} = E_{3}, v_{12} = v_{13}, G_{12} = G_{13}G_{23} = E_{2}/2(1+v_{23}),$$

$$v_{23} = v_{12}(1-v_{12}E_{2}/E_{1})/(1-v_{12})$$

(11)

其中,*v*₂₃是通过张量变换将二维层合板理论推 广到三维得到的,强度参数满足:

 $Z_{i} = Y_{i}, Z_{c} = Y_{c}, S_{13} = S_{12}$ (12) 其中, S_{3} 取树脂基体的剪切强度。

通过 ABAQUS 子程序 UMAT 实现损伤模拟,程 序结构框图如图 10 所示。

图 10 损伤子程序 UMAT 结构框图

5 有限元分析

5.1 复合材料厚板连接件结构介绍

复合材料厚板连接件依据复材中央翼壁板与 金属1号肋的连接结构形式设计,受篇幅限制,本文 仅针对特征连接进行分析。

建模采用 8 节点缩减积分单元 C3D8R 模拟复 材厚板,用 C3D4 单元模拟钛板,用 C3D8R 模拟高 锁螺栓,利用模型的对称性取半边试验件建模模 拟。试验件长度方向为 U_x,试验件宽度方向为 U_x, 厚度方向为 U_z,有限元模型如图 11 所示。

图 11 复材厚板连接件有限元模型

边界条件:

约束钛板夹持端 $U_x = 0, U_y = 0, U_z = 0$ 自由度, 中性对称面约束 $U_x = 0$ 。复合材料夹持端施加均匀 拉伸载荷进行求解。

复合材料损伤按 Hashin's 的渐进损伤模型分析。当单层板工作应变 ε 大于许用应变 ε_0 时,引入 刚度折减更新刚度阵迭代步,折减系数与能量 G_e和 工作应变 ε '相关,趋势关系如图 12 所示。

图 12 Hashin's 渐进损伤模型

5.2 复合材料厚板连接件计算结果

有限元模型计算,以孔壁挤压变形达4%孔径 工程失效判定,预测试件初始破坏载荷。有限元分 析结果如表11所示。

民用飞机设计与研究 Civil Aircraft Design & Research

表 11 单双剪试验件破坏情况

试件编号	试验初始破坏 载荷/kN	模拟初始破坏 载荷/kN	误差
S40A1	29.74	29.48	-0.9%
S40D1	39.57	37.69	-4.8%
D40A1	60.46	58.73	-2.9%
D40B1	51.78	50.7	-2.1%
D40C1	57.83	56.71	-1.9%
D40D1	54.6	52.75	-3.4%
S60A2	49.66	43.13	-13.1%
S60D2	45.74	41.17	-10.0%
D60A2	101.13	104.82	3.6%
D60B2	91.36	96.34	5.5%
D60C2	98.89	102.76	3.9%
D60D2	97.18	96.95	-0.2%
S80A1	55.25	58.1	5.2%
S80D1	52.54	56.2	7.0%
D80A1	146.05	150.1	2.8%
D80B1	139.61	137.15	-1.8%
D80C1	142.17	146.8	3.3%
D80D1	141.05	140.7	-0.2%

由表 11 可见,除个别算例外有限元分析结果与 实测结果误差在 7% 以内,满足工程要求。

本文用有限元模拟试件的初始破坏,按 σ_{bru} = P/Dt 计算试件的工程许用挤压应力。

5.2.1 单双剪切试验件破坏情况

单双剪切连接的60层试验件,双剪试件工程许 用挤压应力明显高于单剪试件。单剪试验件,孔壁 挤压应力集中严重,试件初始破坏应力水平低,受 二次弯矩影响较大,如表12所示。

表 12 单双剪试验件破坏情况

	铺层 厚度	试件编号	初始破坏 载荷/kN	工程许用 名义应变	工程许用挤压 应力/MPa
	60 目	S60D2	45.74	4 210	317
60 层	D60D2	97.18	8 940	673	

5.2.2 不同铺层比例试验件破坏情况

不同铺层比例的复材厚板初始破坏应变差别 大,在4800~9150 微应变之间。其中,45°铺层比 例较低的A和C类层合板初始破坏应变较低。而 复材厚板初始破坏应力接近,双剪试件许用挤压应

力在 600MPa ~ 700MPa 之间,如表 13 所示。 表 13 不同铺层比例试验件破坏情况

铺层 厚度	试件编号	初始破坏 载荷/kN	工程许用 名义应变	工程许用挤压 应力/MPa
60 层	D60A2	101.13	6 410	700
	D60B2	91.36	9 150	633
	D60C2	98.89	4 810	685
	D60D2	97.18	8 940	673

6 结论

本文通过工程计算和有限元模拟,对复合材料 厚板连接试验件破坏模式、失效载荷进行分析研 究,结论如下:

(1)复材厚板试件孔壁挤压应力分布在厚度方向上向剪切面集中,工程上的三角形应力梯度分布 假设偏保守,可用。

(2)工程判定孔壁挤压变形达4%孔径即试件 失效,并结合有限元方法。预测试件的初始破坏载 荷与试验测试结果接近,满足工程要求。

(3)复材厚板试件的铺层比例不同,连接件失效形式不同。对于双剪连接试件,若45°铺层比例高,以孔边挤压破坏为主;若45°铺层比例低,以复 材板剪切破坏为主。

(4)复材厚板试件孔径板厚比(D/t)均很小。 单剪切试验件的破坏会出现螺栓剪断失效;双剪试 验件的破坏则多为孔边挤压破坏。

(5) 双剪试件工程许用挤压应力高达 600MPa ~ 700MPa, 明显高于单剪试件的工程许用挤压应力。

参考文献:

[1] 王丹勇, 温卫东, 崔海涛. 复合材料单钉接头三维逐渐损伤破坏分析[J]. 复合材料学报, 2005, 3.

[2]中国航空研究院. 复合材料连接手册[M]. 北京:航空 工业出版社. 1994.

[3] Z. Hashin, A. Rotem. A Fatigue Failure Criterion for Fiber Reinforced Materials [J]. Journal of Composite Material, 1973.7

[4]赵丽滨,秦田亮,李嘉玺,付月.复合材料结构三维有限元分析的 材料参数[J].北京:北京航空航天大学学报,2010,7.

[5] Navin Jaunky, Damodar R. Ambur, Carlos G. Dávila, and Mark Hilburger. Progressive Failure Studies of Composite Panels with and Without[R]. NASA/CR-2001-211223 ICASE Report, No. 2001-27.

[6] 庄茁. ABAQUS 有限元软件 6.4 版入门指南[M]. 北京: 清华大学出版社,1997.