en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

方阳,男,硕士研究生,工程师。主要研究方向:飞机结构设计与优化、数值分析,熟练CATIA二次开发。E-mail:fangyang1@comac.cc

通讯作者:

方阳,E-mail:fangyang1@comac.cc

中图分类号:V261.8;TG668

文献标识码:A

DOI:10.19416/j.cnki.1674-9804.2020.02.022

参考文献 1
VASU A,GRANDHI R V.Effects of curved geometry on residual stress in laser peening[J].Surface&Coatings Technology,2013,218(15):71-79.
参考文献 2
VASU A,HU Y X,GRANDHI R V.Differences in Plasticity due to Curvature in Laser Peened Components[J].Surface & Coatings Technology,2013,235(25):648-656.
参考文献 3
HACKEL L,RANKIN J,RACANELLIA T,et al.Laser Peening to Improve Fatigue Strength and Lifetime of Critical Components[J].6th Fatigue Design conference.Procedia Engineering,2015,133:545-555.
参考文献 4
VASU A,GOBAL K,GRANDHI R V.A computational methodology for determining the optimum re-peening schedule to increase the fatigue life of laser peened aircraft components [J].International Journal of Fatigue,2015,70:395-405.
参考文献 5
王建明,赵莉莉,吕鹤婷.喷丸残余应力对裂纹扩展疲劳寿命的影响[J].哈尔滨工程大学学报,2016,37(4):608-613.
参考文献 6
QIAN H C.Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications[J].Applied Surface Science,2015,351:524-530.
参考文献 7
ACHINTHA M,NOWELL D,FUFARI D,et al.Fatigue behaviour of geometric features subjected to laser shock peening:Experiments and modeling[J].International Journal of Fatigue,2014,62:171-179.
参考文献 8
KELLER S,CHUPAKHIN S,STARON P,et al.Experimental and numerical investigation of residual stresses in laser shock peened AA2198[J].Journal of Materials Processing Technology,2018,255:294-307.
参考文献 9
MENG X K,ZHOU J Z,SU C,et al.Residual stress relaxation and its effects on the fatigue properties of Ti6Al4V alloy strengthened by warm laser peening[J].Materials Science & Engineering,2017,680:297-304.
参考文献 10
LU J Z,QI H,LUO K Y,et al.Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J].Corrosion Science,2014,80:53-59.
参考文献 11
DAI F Z,ZHOU J Z,LU J Z,et al.A technique to decrease surface roughness in overlapping laser shock peening[J].Applied Surface Science,2016,370:501-507.
参考文献 12
Xu S Q,HUANG S,MENG X K,et al.Thermal evolution of residual stress in IN718 alloy subjected to laser peening[J].Optics and Lasers in Engineering,2017,94:70-75.
参考文献 13
HENNING W,FELDMANN G,HAUBOLD T.Shot Peening Method for Aerofoil Treatment of Blisk Assemblies[J].2nd CIRP Conference on Surface Integrity(CSI).Procedia CIRP,2014,13:355-358.
参考文献 14
QIAN H C,ZHAO J B,GAO Y.Experimental investigation of laser peening on TiA lalloy microstructure and properties[J].Chinese Journal of Aeronautics,2015,28(2):609-616.
参考文献 15
SALIMIANRIZI A,FOROOZMEHR E,BADROSSAMAY M,et al Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6[J].Optics and Lasers in Engineering,2016,77:112-117.
参考文献 16
Amini,S.,M.Dadkhah and R.Teimouri,Study on laser shock penning of Incoloy 800 super alloy[J].OptikInternational Journal for Light and Electron Optics,2017,140:308316.
参考文献 17
ZOU S K,WU J F,ZHANG Y K,et al.Surface integrity and fatigue lives of Ti17 compressor blades subjected to laser shock peening with square spots[J].Surface and Coatings Technology,2018,347:398-406.
参考文献 18
CAO Z W,CHE Z G,ZOU S K.Simulation Study of Stress Hole on Laser Shock Peening with Square Spot[J].Rare Metal Materials and Engineering,2013,42(S2):222-225.
参考文献 19
YANG C H,HODGSON P D,LIU Q C,et al.Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J].Journal of Materials Processing Technology,2008,201(13):303-309.
参考文献 20
STICCHI M,STARON P,SANO Y,et al.A parametric study of laser spot size and coverage on the laser shock peening induced residual stress in thin aluminium samples[J].The Journal of Engineering:2015:97-105.
参考文献 21
SPRADLIN T J,GRANDHI R V,LANGER K.Experimental validation of simulated fatigue life estimates in laserpeened aluminum[J].International Journal of Structural Integrity,2011,2(1):74-86.
参考文献 22
HFAIEDH N,PEYRE P.SONG H B,et al.Finite Element analysis of Laser Shock Peening of 2050-T8 aluminum alloy[J].International Journal of Fatigue,2015,70:480-489.
目录contents

    摘要

    在飞机服役过程中,部分金属零件因承载应力及环境因素,疲劳及腐蚀问题突出,常用表面强化在零件表层引入残余压应力进行改善。激光喷丸强化利用短脉冲激光束作为介质对材料表面改性达到强化效果,文中利用基于CATIA软件开发的激光喷丸强化工艺轨迹规划平台,实现喷丸区域CAD几何特征提取与喷丸轨迹的规划、生成、可视化及输出功能的一体化,对某机型货舱门框的机加框零件进行激光喷丸强化轨迹路径的规划和输出。利用ABAQUS软件子程序分析机加框激光喷丸强化后的变形行为,包括喷丸区应力、应变及变形位移量分布特点。结果表明:在给定工艺参数情况下,机加框喷丸区最大压应力位于表面1.0 mm左右,最大等效应变0.03~0.04,喷丸区域表面平均变形位移50 μm,数值模拟验证了轨迹平台用于规划生成轨迹的适用性。

    Abstract

    The fatigue and corrosion problems of some metallic parts will often occur due to alternating load and severe environment condition during aircraft’s service period. The surface treatment process was always utilized to improve fatigue and wear crack propagation resistance performance by inducing compressive stress through thickness direction. Laser shock peening (LSP) is an effective laser-based surface processing technique to enhance surface strength and extend fatigue life of metallic part. In this paper, the trajectory planning and generation platform was developed and integrated into CATIA software. The platform could achieve the functions by integrating trajectory planning, generation, visualization and results output with extraction of CAD geometric features in peening zone. And then the platform was used to generate peening path of machined frame for aircraft cargo door bulkhead. The deformation behavior of machined frame was studied in terms of stress, strain and deformed displacement after LSP by ABAQUS subroutine analysis. The results show that maximum compressive stress locates 1.0 mm below the surface and with equivalent strain of 0.03~0.04 at the same location by giving LSP process parameters in this paper. The average deformed displacement is about 50 μm in typical peening region. Besides, the finite element analysis of LSP for machined frame also validates the suitability of trajectory planning and generation in the aforementioned integration platform.

  • 0 引言

  • 激光喷丸强化是一种新型表面改性技术,相比传统弹珠喷丸具有表面完整性好、残余压应力层深、零件疲劳寿命长,自动化程度高及工作环境好等优势,尤其在零件易疲劳部位(如转角、底圆角、曲度变化剧烈等区域)比传统喷丸强化有更好的工艺灵活性及表面强化效果。

  • 激光喷丸强化在飞机零部件表面处理及维修领域有很多工程应用。比如飞机机翼接头零件的激光喷丸强化处理[1-4],包括一些支座类、耳片等疲劳易损零件,以提高应力腐蚀裂纹的抵抗能力[5-6]。已有研究表明激光喷丸可以处理多种常用航空金属材料,比如铝(Al2024-T351)、铝锂合金(AA2198-T3)、钛合金(Ti-6Al-4V)、钢(AISI304)及高温合金(IN718)等[7-12]

  • 作为喷丸工艺实现工业应用的一个重要环节,轨迹生成及路径规划会影响喷丸质量、效率及成本,与传统弹丸喷丸处理复杂零部件类似[13],需要根据零件外形几何特征和喷丸部位进行喷丸前期路径的生成及预处理,激光喷丸强化工艺灵活性比较大,可以借助工业机器人或专用设备执行轨迹[14]进行喷丸处理。 SALIMIANRIZI A.et al.[15] 和AMINI S.et al.[16]探究了喷丸路径对残余应力及强度的影响,喷丸次数增加会提高材料硬度和强度,一定程度会降低韧性。ZOU Shikun et al.[17]研究了采用方形光斑喷丸Ti-17压缩机叶片的表面完整性及疲劳性能,喷丸后叶片两侧面的表面粗糙度降低,疲劳寿命提高一个数量级。CAO Ziwen et al.[18]采用数值模拟分析方形光斑条件下钛合金Ti-6Al-4V喷丸后在光斑作用中心部位存在应力孔现象。YANG Chunhui et al.[19]采用FEA对比分析不同直径的AA7050圆棒激光喷丸后中心部位的残余应力,圆棒直径不同,喷丸后中心部位径向及纵向(轴向)残余应力分布有很大差异。目前国内外大多数研究侧重于试验件激光喷丸、喷丸机理及变形力学特征分析、喷丸材料及工艺参数影响等,关于激光喷丸强化轨迹定制化生成及一体化集成平台的开发设计,以及轨迹路径对喷丸质量及效率影响的有关研究还比较少。

  • 基于CATIA软件实现了激光喷丸强化工艺轨迹平台软件的一体化开发,并对某机型货舱门框的机加框喷丸区进行喷丸路径规划和轨迹生成,按照输出的轨迹点数据,采用ABAQUS有限元软件的子程序分析激光喷丸区域的变形行为,包括分析应力、应变及变形位移的分布特点。

  • 1 激光喷丸强化轨迹平台开发

  • CATIA是制造业领域的一款主流软件,提供两种二次开发接口,包括自动化对象编程和开放的基于构件的应用编程接口。前者采用VB,编程系统采用面向对象、事件驱动的编程机制,提供一种简单易行的可视化程序设计方法。后者是以框架技术为开发平台,采用标准接口技术,利用C ++ 与CATIA进行通信,可根据用户需求实现对CATIA所有开放接口的二次开发。C#是一种面向对象的高级程序设计语言,综合VB简单可视化操作和C++高速运行效率的特点。利用C#编程语言,基于CATIA软件进行激光喷丸强化工艺轨迹平台软件的开发工作,该软件平台开发功能及流程如图1所示。

  • 图1 平台开发功能及流程图

  • 1.1 轨迹平台软件交互界面

  • 为了实现友好人机交互界面平台的操作,该平台软件分为登录模块和喷丸轨迹规划及生成输出的主界面模块。

  • 1)登录模块:输入用户名和密码,验证访问权限后进入主界面,且新用户可以进行注册实现权限安全管理,如图2所示。

  • 图2 登录界面

  • 2)主界面模块:该平台主界面,如图3所示,分为若干个功能区,各个功能区的实现如下:

  • (1)喷丸轨迹生成模块:选择并设定喷丸轨迹生成几何参数;

  • (2)喷丸工艺参数设置模块:设置喷丸轨迹工艺参数,比如覆盖率,光斑显示与隐藏;

  • (3)零组件信息显示模块:显示与喷丸零件关联的CATIA几何特征;

  • (4)激光喷丸强化类型模块:选择喷丸工艺类型,按需可选择单面和双面喷丸;

  • 图3 CATIA软件喷丸轨迹平台主界面

  • (5)工作任务进度区:显示用户当前的任务进度及工作量;

  • (6)界面提示信息区域:提示用户当前操作的信息及状态。

  • 1.2 机加框喷丸轨迹生成

  • 以某型飞机机身前货舱门框部位需要进行喷丸处理的机加框零件为例,图4(a)为轨迹平台主界面在CATIA软件中的交互界面显示,图4(b)和(c)分别为机加框局部喷丸部位的轨迹生成过程及结果文件输出。

  • 图4 机加框喷丸轨迹生成图示

  • 根据上述轨迹平台规划生成及输出的喷丸轨迹相关数据,在一定程度上可以实现后续激光喷丸强化(或成形)的数值分析及实验验证工作。

  • 2 机加框激光喷丸数值分析

  • 根据第1.2节激光喷丸轨迹平台生成的喷丸轨迹,利用ABAQUS有限元软件对机加框喷丸区进行激光喷丸数值模拟,分析机加框激光喷丸后的变形行为特点,验证喷丸轨迹平台用于轨迹的适用性。

  • 2.1 材料及工艺参数

  • 货舱门框机加框材料采用铝合金2050T8,其化学成分见表1,因激光喷丸材料变形为动态屈服塑性变形,应变率在106 s-1量级。因此,应力应变关系可采用Johnson-Cook模型,如式(1)所示。

  • σY=A+Bεpn1+Clnε˙pε˙p01-T-TrTm-T0m
    (1)
  • 式中:

  • A为材料静态屈服强度;B为材料应变硬化系数;C为应变率敏感系数;m为温度软化系数;n为应变硬化指数; ε˙p0为参考应变速率,取1.0s-1;TT 0T m分别为工作温度,参考温度及材料熔化温度。若忽略喷丸过程的温度效应[20-21]影响,即T*=T-TrT-Tm=0,材料模型参数见表2。

  • 表1 2050-T8化学成分[22]组成

  • 表2 2050-T8Johnson-Cook模型参数

  • 激光喷丸强化的激光源目前比较常见是采用工业级Nd:YAG(掺钕钇铝石榴石)固体激光器,工艺参数如表3所示。

  • 表3 激光工艺参数

  • 在激光喷丸强化过程中,激光光斑覆盖区域内在零件表面诱发的脉冲压力分布可近似采用高斯分布[22]模型,如式(2)所示。

  • p(x,y,t)=p0(t)1-12x2+y2r2
    (2)
  • 式中:

  • r为激光光斑半径/mm;p 0(t)为激光瞬时脉冲压力/Mpa。

  • 2.2 机加框激光喷丸数值模拟

  • 考虑模拟成本及喷丸斑点具有规则分布特征,选取机加框喷丸区具有代表性的局部进行激光喷丸FEA分析,网格单元类为C3D8R,喷丸部位网格进行细化(0.25mm),依据轨迹路径,采用VDLOAD子程序进行激光喷丸变形分析,整个模型共有617 640个单元,有限元模型如图5所示。

  • 图5 激光喷丸区域FEA模型

  • 2.2.1 喷丸区域应力分析

  • 为了探究激光喷丸区域应力分布特点,现对机加框喷丸区域的不同部位最小主应力进行对比分析。图6所示为距离参考基准面d=21.5mm处应力分布,图7为距离参考基准面21.5mm、23.0mm、24.5mm和26.0mm处应力分布。

  • 图6 喷丸区域d=21.5mm处最小主应力

  • 图7 喷丸区域不同位置最小主应力分布

  • 从图6和图7中应力分布可以看出,最小压应力均不在零件表面部位,而在距离表面大约1.0mm厚度处,且距离参考基准面不同位置处的激光喷丸最小压应力值基本相同,压应力分布也较均匀,最小应力值范围在-460Mpa~-510Mpa。

  • 2.2.2 喷丸区域应变分析

  • 为了进一步分析激光喷丸对局部塑性变形的影响,采用等效塑性应变(Equivalent plastic strain,以下简称PEEQ)与应力分析一致,提取喷丸区域不同部位的等效应变PEEQ。图8所示为距离参考基准面d=21.5mm处的PEEQ分布,图9为距离参考基准面为21.5mm、23.0mm、24.5mm和26.0mm处的应变分布。

  • 图8和图9的等效应变PEEQ分布表明最大应变不在零件表面部位,也大致位于距离表面1.0mm厚度处,且距离参考基准面不同位置的等效塑性应变PEEQ分布较均匀,最大应变范围在0.03~0.04。

  • 图8 喷丸区域d=21.5mm处PEEQ分布

  • 图9 喷丸区域不同位置处PEEQ分布

  • 2.2.3 喷丸区域变形位移分析

  • 图10所示为喷丸区域中心部位(d=26.0mm)处的变形位移量沿着中心路径(图示红色标识处)的变化,在两端平面喷丸区域与圆角喷丸区域过渡处,位移量变化存在拐点,整个喷丸路径区域的平均变形位移量为50 μm左右,数值分析表明机加框零件激光喷丸区域的表面质量较好。

  • 图10 中心喷丸部位(d=26.0mm)变形位移

  • 3 结论

  • 通过上述激光喷丸工艺路径轨迹规划及生成平台的开发及对某机型货舱门框机加框的激光喷丸强化数值模拟分析研究,得出以下几点结论:

  • 1)利用CATIA软件开发,实现激光喷丸强化轨迹规划生成与CAD平台一体化集成功能,具有较好的人机交互界面;

  • 2)在给定参数情况下,门框机加框局部激光喷丸后最大压应力距离表面1.0mm左右,最大等效应变0.03~0.04,零件表面平均变形位移量50 μm,表面质量较好;

  • 3)基于FEA有限元分析,机加框激光喷丸数值模拟分析验证了激光喷丸强化轨迹平台用于喷丸轨迹规划及生成输出的适用性。

  • 参考文献

    • [1] VASU A,GRANDHI R V.Effects of curved geometry on residual stress in laser peening[J].Surface&Coatings Technology,2013,218(15):71-79.

    • [2] VASU A,HU Y X,GRANDHI R V.Differences in Plasticity due to Curvature in Laser Peened Components[J].Surface & Coatings Technology,2013,235(25):648-656.

    • [3] HACKEL L,RANKIN J,RACANELLIA T,et al.Laser Peening to Improve Fatigue Strength and Lifetime of Critical Components[J].6th Fatigue Design conference.Procedia Engineering,2015,133:545-555.

    • [4] VASU A,GOBAL K,GRANDHI R V.A computational methodology for determining the optimum re-peening schedule to increase the fatigue life of laser peened aircraft components [J].International Journal of Fatigue,2015,70:395-405.

    • [5] 王建明,赵莉莉,吕鹤婷.喷丸残余应力对裂纹扩展疲劳寿命的影响[J].哈尔滨工程大学学报,2016,37(4):608-613.

    • [6] QIAN H C.Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications[J].Applied Surface Science,2015,351:524-530.

    • [7] ACHINTHA M,NOWELL D,FUFARI D,et al.Fatigue behaviour of geometric features subjected to laser shock peening:Experiments and modeling[J].International Journal of Fatigue,2014,62:171-179.

    • [8] KELLER S,CHUPAKHIN S,STARON P,et al.Experimental and numerical investigation of residual stresses in laser shock peened AA2198[J].Journal of Materials Processing Technology,2018,255:294-307.

    • [9] MENG X K,ZHOU J Z,SU C,et al.Residual stress relaxation and its effects on the fatigue properties of Ti6Al4V alloy strengthened by warm laser peening[J].Materials Science & Engineering,2017,680:297-304.

    • [10] LU J Z,QI H,LUO K Y,et al.Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J].Corrosion Science,2014,80:53-59.

    • [11] DAI F Z,ZHOU J Z,LU J Z,et al.A technique to decrease surface roughness in overlapping laser shock peening[J].Applied Surface Science,2016,370:501-507.

    • [12] Xu S Q,HUANG S,MENG X K,et al.Thermal evolution of residual stress in IN718 alloy subjected to laser peening[J].Optics and Lasers in Engineering,2017,94:70-75.

    • [13] HENNING W,FELDMANN G,HAUBOLD T.Shot Peening Method for Aerofoil Treatment of Blisk Assemblies[J].2nd CIRP Conference on Surface Integrity(CSI).Procedia CIRP,2014,13:355-358.

    • [14] QIAN H C,ZHAO J B,GAO Y.Experimental investigation of laser peening on TiA lalloy microstructure and properties[J].Chinese Journal of Aeronautics,2015,28(2):609-616.

    • [15] SALIMIANRIZI A,FOROOZMEHR E,BADROSSAMAY M,et al Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6[J].Optics and Lasers in Engineering,2016,77:112-117.

    • [16] Amini,S.,M.Dadkhah and R.Teimouri,Study on laser shock penning of Incoloy 800 super alloy[J].OptikInternational Journal for Light and Electron Optics,2017,140:308316.

    • [17] ZOU S K,WU J F,ZHANG Y K,et al.Surface integrity and fatigue lives of Ti17 compressor blades subjected to laser shock peening with square spots[J].Surface and Coatings Technology,2018,347:398-406.

    • [18] CAO Z W,CHE Z G,ZOU S K.Simulation Study of Stress Hole on Laser Shock Peening with Square Spot[J].Rare Metal Materials and Engineering,2013,42(S2):222-225.

    • [19] YANG C H,HODGSON P D,LIU Q C,et al.Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J].Journal of Materials Processing Technology,2008,201(13):303-309.

    • [20] STICCHI M,STARON P,SANO Y,et al.A parametric study of laser spot size and coverage on the laser shock peening induced residual stress in thin aluminium samples[J].The Journal of Engineering:2015:97-105.

    • [21] SPRADLIN T J,GRANDHI R V,LANGER K.Experimental validation of simulated fatigue life estimates in laserpeened aluminum[J].International Journal of Structural Integrity,2011,2(1):74-86.

    • [22] HFAIEDH N,PEYRE P.SONG H B,et al.Finite Element analysis of Laser Shock Peening of 2050-T8 aluminum alloy[J].International Journal of Fatigue,2015,70:480-489.

  • 参考文献

    • [1] VASU A,GRANDHI R V.Effects of curved geometry on residual stress in laser peening[J].Surface&Coatings Technology,2013,218(15):71-79.

    • [2] VASU A,HU Y X,GRANDHI R V.Differences in Plasticity due to Curvature in Laser Peened Components[J].Surface & Coatings Technology,2013,235(25):648-656.

    • [3] HACKEL L,RANKIN J,RACANELLIA T,et al.Laser Peening to Improve Fatigue Strength and Lifetime of Critical Components[J].6th Fatigue Design conference.Procedia Engineering,2015,133:545-555.

    • [4] VASU A,GOBAL K,GRANDHI R V.A computational methodology for determining the optimum re-peening schedule to increase the fatigue life of laser peened aircraft components [J].International Journal of Fatigue,2015,70:395-405.

    • [5] 王建明,赵莉莉,吕鹤婷.喷丸残余应力对裂纹扩展疲劳寿命的影响[J].哈尔滨工程大学学报,2016,37(4):608-613.

    • [6] QIAN H C.Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications[J].Applied Surface Science,2015,351:524-530.

    • [7] ACHINTHA M,NOWELL D,FUFARI D,et al.Fatigue behaviour of geometric features subjected to laser shock peening:Experiments and modeling[J].International Journal of Fatigue,2014,62:171-179.

    • [8] KELLER S,CHUPAKHIN S,STARON P,et al.Experimental and numerical investigation of residual stresses in laser shock peened AA2198[J].Journal of Materials Processing Technology,2018,255:294-307.

    • [9] MENG X K,ZHOU J Z,SU C,et al.Residual stress relaxation and its effects on the fatigue properties of Ti6Al4V alloy strengthened by warm laser peening[J].Materials Science & Engineering,2017,680:297-304.

    • [10] LU J Z,QI H,LUO K Y,et al.Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J].Corrosion Science,2014,80:53-59.

    • [11] DAI F Z,ZHOU J Z,LU J Z,et al.A technique to decrease surface roughness in overlapping laser shock peening[J].Applied Surface Science,2016,370:501-507.

    • [12] Xu S Q,HUANG S,MENG X K,et al.Thermal evolution of residual stress in IN718 alloy subjected to laser peening[J].Optics and Lasers in Engineering,2017,94:70-75.

    • [13] HENNING W,FELDMANN G,HAUBOLD T.Shot Peening Method for Aerofoil Treatment of Blisk Assemblies[J].2nd CIRP Conference on Surface Integrity(CSI).Procedia CIRP,2014,13:355-358.

    • [14] QIAN H C,ZHAO J B,GAO Y.Experimental investigation of laser peening on TiA lalloy microstructure and properties[J].Chinese Journal of Aeronautics,2015,28(2):609-616.

    • [15] SALIMIANRIZI A,FOROOZMEHR E,BADROSSAMAY M,et al Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6[J].Optics and Lasers in Engineering,2016,77:112-117.

    • [16] Amini,S.,M.Dadkhah and R.Teimouri,Study on laser shock penning of Incoloy 800 super alloy[J].OptikInternational Journal for Light and Electron Optics,2017,140:308316.

    • [17] ZOU S K,WU J F,ZHANG Y K,et al.Surface integrity and fatigue lives of Ti17 compressor blades subjected to laser shock peening with square spots[J].Surface and Coatings Technology,2018,347:398-406.

    • [18] CAO Z W,CHE Z G,ZOU S K.Simulation Study of Stress Hole on Laser Shock Peening with Square Spot[J].Rare Metal Materials and Engineering,2013,42(S2):222-225.

    • [19] YANG C H,HODGSON P D,LIU Q C,et al.Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J].Journal of Materials Processing Technology,2008,201(13):303-309.

    • [20] STICCHI M,STARON P,SANO Y,et al.A parametric study of laser spot size and coverage on the laser shock peening induced residual stress in thin aluminium samples[J].The Journal of Engineering:2015:97-105.

    • [21] SPRADLIN T J,GRANDHI R V,LANGER K.Experimental validation of simulated fatigue life estimates in laserpeened aluminum[J].International Journal of Structural Integrity,2011,2(1):74-86.

    • [22] HFAIEDH N,PEYRE P.SONG H B,et al.Finite Element analysis of Laser Shock Peening of 2050-T8 aluminum alloy[J].International Journal of Fatigue,2015,70:480-489.

  • 微信公众号二维码

    手机版网站二维码

    我要投稿 投稿指南 联系我们 二维码
    TOP