基于TextCNN的试飞运营问题分类
作者:
作者单位:

作者简介:

俞立群,男,硕士,工程师。主要研究方向:飞机数据管理与分析。E-mail:yuliqun@comac.cc

通讯作者:

俞立群,E-mail:yuliqun@comac.cc

中图分类号:

TP391.1

基金项目:


Classification of flight test and operation problems based on TextCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对需要识别海量试飞运营问题中的故障问题用于可靠性指标计算评估,基于深度学习中的文本卷积神经网络,提出一种试飞运营问题文本分类方法。通过收集大量的以人工分类的试飞运营问题文本作为实验数据集,并进行相应的预处理,运用Word2Vec模型将问题描述文本训练成词向量,构建出TextCNN模型进行训练完成问题文本的分类。最后通过实验表明,基于TextCNN模型的试飞运营问题分类方法可以为试飞运营问题自动化分类工作提供参考。

    Abstract:

    Aiming to identify fault issues in a large amount of flight test and operation data for reliability indicator calculation and evaluation, a text classification method based on convolutional neural networks (CNN) in deep learning was proposed. By collecting a large amount of manually classified flight test and operation problem texts as the experimental datasets and performing corresponding preprocessing, the Word2Vec model was used to train the problem description text into word vectors, and a TextCNN model was constructed for training to complete the classification of problem texts. Finally, the experiments show that the classification method for flight test and operation problem based on TextCNN model can provide reference for the automated classification of flight test and operation problems.

    参考文献
    相似文献
    引证文献
引用本文

俞立群.基于TextCNN的试飞运营问题分类[J].民用飞机设计与研 究,2023(4):1-5YU Liqun. Classification of flight test and operation problems based on TextCNN[J]. Civil Aircraft Design and Research,2023,(4):1-5. ( in Chinese)

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-17
  • 出版日期:

微信公众号二维码

手机版网站二维码

我要投稿 投稿指南 联系我们 二维码
TOP