Abstract:Aircraft fuselage panel is one of the important load carrying members in structure design. The characteristics of lightweight, high efficiency, commonality and optimal design for civil aircraft have been attracted much attention in the past decades. In this study, an optimization methodology coupling ABAQUS buckle analysis and ISIGHT optimization was presented. The buckle eigenvalue was extracted from linear buckle analysis in ABAUQS using subroutine firstly, which was then input into ISIGHT for critical buckle load calculation. Meanwhile, the optimized parameters and ABAQUS input file were updated simultaneously for iterative analysis subsequently until the optimization procedure was finished. By utilizing the proposed method, the optimization study considering minimal weight as objective and fatigue stress as constraint respectively for metallic fuselage panel design was conducted under axial compression. The panel skin thickness, stringer number and cross section thickness of stringer were taken into account for optimization. Finally, the ratio of loadcarrying to weight, critical stress and panel stiffening ratio were evaluated comprehensively to obtain optimal geometrical parameters both satisfying structural load carrying capacity and minimal weight. Besides, the optimal results were in reasonable agreement with theoretical results with a relative error of 3.73%.This method achieves the platform integration of FEA and optimization, which can provide further guidance for weight saving design of structural component and composite panel, therefore leading to time saving for aircraft component design in a certain degree。